Mass Spectrometry

Measure masses of atoms and molecules in a sample

Mass spectrometry (MS) is an analytical technique in which chemical substances are ionized and sorted according to their mass-to-charge ratio (m/q). Simply expressed, a mass spectrum depicts the masses of atoms and molecules in a sample. After desorption (transfer of the analytes into the gas phase), the molecules are ionized. The excitation can be done with a laser. By applying an electric field, the ions are accelerated and guided to a sorting analyzer/detector. Laser-based mass spectroscopy applications are mostly so-called time-of-flight mass spectrometers. In this case, it is taken advantage of the fact that the ions all have the same energy when they arrive at the detector and that the flight time – from acceleration to arrival at the detector surface – depends largely on the mass of the particles: the heavier, the longer the flight time. Very fast detectors are required for TOF (time of flight) analysis. An advantage of this method is the relatively small amount of data in the analysis results.

MALDI-TOF mass spectrometry

MALDI-TOF, abbreviated MALDI or MALDI-TOF mass spectrometry, is the name for a separate type of mass spectrometry. Written out, MALDI-TOF means “matrix-assisted laser desorption time-of-flight mass spectrometry”. It is particularly suitable for the analysis of large molecules, aerosols, polymers and biopolymers (proteins) as well as lipids and pigments. The difference in matrix assisted analysis is that the exciting laser beam does not affect the molecules directly, as they would be destroyed. The molecules are “built into” a crystalline matrix and are thus protected from destruction, which would not be beneficial to the analysis. These matrix substances are often small organic molecules that absorb strongly at the appropriately chosen excitation wavelength, such as sinapic acid. Commonly used for MALDI-TOF are N2 nitrogen lasers (337.1 nm) or Nd:YAG based DPSS lasers with frequency multiplication (355 nm). High-energy, short laser pulses are emitted onto the matrix, which leads to the separation of particles on the surface after relaxation in the crystal lattice.

Ionization of complex molecular structures

The development of new methods for ionization of complex molecular structures is ever present due to the wide application of mass spectrometry. UVPD (ultraviolet photodissociation) excites ions by absorption of high-energy photons, which opens up new dissociation paths compared to conventional methods of ion activation. Specifically, this means using shorter wavelengths, such as 266 nm (4.6 eV) or 213 nm (5.8 eV), whose single photons have energies higher than 355 nm (3.5 eV).

Mass spectrometry is used in many different fields, e.g. in pharmacology and for the characterization of proteins or aerosols, and is applied to pure samples as well as to complex mixtures. Laser-based generation of ions has been dominated by excimer and nitrogen lasers for decades and is becoming increasingly important in medicine, food technology and pharmaceuticals. Gas lasers are gradually and partially being replaced by diode-pumped solid-state lasers.

Related products:

2023-01-19T12:40:58+00:00

eMOPA213-20

  • Pulse energy: 20 µJ
  • Wavelength: 213 nm
  • Average power: 20 mW
  • Max. repetition rate: 1000 Hz
  • Peak power: 33 kW
2023-01-19T14:51:27+00:00

eMOPA266-40

  • Pulse energy: 40 µJ
  • Wavelength: 266 nm
  • Average power: 40 mW
  • Max. repetition rate: 1000 Hz
  • Peak power: 50 kW
2023-01-19T14:51:44+00:00

eMOPA355-100

  • Pulse energy: 100 µJ
  • Wavelength: 355 nm
  • Average power: 100 mW
  • Max. repetition rate: 1000 Hz
  • Peak power: 111 kW
2023-01-19T14:52:06+00:00

eMOPA532-200

  • Pulse energy: 200 µJ
  • Wavelength: 532 nm
  • Average power: 200 mW
  • Max. repetition rate: 1000 Hz
  • Peak power: 182 kW
2023-01-19T14:46:03+00:00

MOPA266-50

  • Pulse energy: 50 µJ
  • Wavelength: 266 nm
  • Average power: 50 mW
  • Max. repetition rate: 1000 Hz
  • Peak power: 50 kW
2023-01-19T14:43:21+00:00

MOPA355-200

  • Pulse energy: 200 µJ
  • Wavelength: 355 nm
  • Average power: 200 mW
  • Max. repetition rate: 1000 Hz
  • Peak power: 143 kW
2023-01-19T14:43:41+00:00

MOPA355-500mW

  • Pulse energy: 25 µJ
  • Wavelength: 355 nm
  • Average power: 500 mW
  • Max. repetition rate: 20000 Hz
  • Peak power: 23 kW
2023-01-19T14:43:56+00:00

MOPA532-250

  • Pulse energy: 250 µJ
  • Wavelength: 532 nm
  • Average power: 250 mW
  • Max. repetition rate: 1000 Hz
  • Peak power: 179 kW
2023-01-19T14:44:30+00:00

MOPA532-700mW

  • Pulse energy: 35 µJ
  • Wavelength: 532 nm
  • Average power: 700 mW
  • Max. repetition rate: 20000 Hz
  • Peak power: 29 kW
2023-01-19T14:44:45+00:00

MOPA1064-650

  • Pulse energy: 650 µJ
  • Wavelength: 1064 nm
  • Average power: 650 mW
  • Max. repetition rate: 1000 Hz
  • Peak power: 406 kW
2023-01-19T14:45:47+00:00

MOPA1064-2000mW

  • Pulse energy: 100 µJ
  • Wavelength: 1064 nm
  • Average power: 2000 mW
  • Max. repetition rate: 20000 Hz
  • Peak power: 63 kW
2023-01-19T13:48:04+00:00

FQSS213-Q1

  • Pulse energy: 0,05 µJ
  • Wavelength: 213 nm
  • Average power: 0,75 mW
  • Max. repetition rate: 20000 Hz
  • Peak power: 0,05 kW
2023-01-19T13:49:48+00:00

FQSS213-Q2

  • Pulse energy: 0,1 µJ
  • Wavelength: 213 nm
  • Average power: 1 mW
  • Max. repetition rate: 10000 Hz
  • Peak power: 0,1 kW
2023-01-19T13:54:11+00:00

FQSS213-Q3

  • Pulse energy: 1,5 µJ
  • Wavelength: 213 nm
  • Average power: 1,5 mW
  • Max. repetition rate: 2500 Hz
  • Peak power: 1,5 kW
2023-01-19T13:58:08+00:00

FQSS213-Q4

  • Pulse energy: 3 µJ
  • Wavelength: 213 nm
  • Average power: 3 mW
  • Max. repetition rate: 1000 Hz
  • Peak power: 1 kW
2023-11-17T14:20:18+00:00

FQSS266-Q1

  • Pulse energy: 0,3 µJ
  • Wavelength: 266 nm
  • Average power: 5 mW
  • Max. repetition rate: 20000 Hz
  • Peak power: 1 kW
2023-11-17T14:23:15+00:00

FQSS266-Q2

  • Pulse energy: 0,8 µJ
  • Wavelength: 266 nm
  • Average power: 8 mW
  • Max. repetition rate: 10000 Hz
  • Peak power: 1 kW
2023-01-19T14:10:52+00:00

FQSS266-Q3

  • Pulse energy: 4 µJ
  • Wavelength: 266 nm
  • Average power: 4 mW
  • Max. repetition rate: 2500 Hz
  • Peak power: 4 kW
2023-01-19T14:11:29+00:00

FQSS266-Q4

  • Pulse energy: 12 µJ
  • Wavelength: 266 nm
  • Average power: 12 mW
  • Max. repetition rate: 1000 Hz
  • Peakleistung: 12 kW
2023-11-17T14:25:55+00:00

FTSS355-Q1

  • Pulse energy: 0,3 µJ
  • Wavelength: 355 nm
  • Average power: 5 mW
  • Max. repetition rate: 20000 Hz
  • Peak power: 1 kW
2023-01-19T14:15:52+00:00

FTSS355-Q2

  • Pulse energy: 3 µJ
  • Wavelength: 355 nm
  • Average power: 30 mW
  • Max. repetition rate: 10000 Hz
  • Peak power: 3 kW
2023-01-19T14:16:48+00:00

FTSS355-Q3

  • Pulse energy: 15 µJ
  • Wavelength: 355 nm
  • Average power: 15 mW
  • Max. repetition rate: 2500 Hz
  • Peak power: 14 kW
2023-01-19T14:17:20+00:00

FTSS355-Q4

  • Pulse energy: 39 µJ
  • Wavelength: 355 nm
  • Average power: 42 mW
  • Max. repetition rate: 1000 Hz
  • Peak power: 38 kW
2023-01-19T13:24:33+00:00

FQSS213-50

  • Pulse energy: 50 µJ
  • Wavelength: 213 nm
  • Average power: 1 mW
  • Max. repetition rate: 30 Hz
  • Peak power: 100 kW
2023-01-19T13:26:49+00:00

FQSS266-50

  • Pulse energy: 50 µJ
  • Wavelength: 266 nm
  • Average power: 5 mW
  • Max. repetition rate:100 Hz
  • Peak power: 45 kW
2023-01-19T13:27:12+00:00

FQSS266-200

  • Pulse energy: 200 µJ
  • Wavelength: 266 nm
  • Average power: 4 mW
  • Max. repetition rate:60 Hz
  • Peak power: 133 kW